Towards Trusted Container Networking: Physical Network
Segmentation by Hardware-assisted Secure Bridge

Myoungsung You, Seungwon Shin
Korea Advanced Institute of Science and Technology

Introduction

In the cloud environment, most services are operated in the form of a
microservice.

A microservice consists of several containers connected through a network.
Containers communicate through a network interface implemented with virtual
network devices of a host system (e.g., Linux bridge, a software switch).

This approach effectively enables inter-container networking, but it denotes that
the container network is still tightly coupled with the host system.

The non-isolated container network inevitably exposes the inter-container
traffic to the host system.

Background and Motivation

Container networking architecture
 Containers have their own network namespace (i.e., networking stacks) and
are separated from the host network.
e Some containers called host-network containers share a network
namespace with the host kernel, allowing them to access the host system’s
network resources.
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Container network security solutions

e Traffic inspection
e Restrict network flow between containers according to security policies
e Cilium, Calico, Bastion (USENIX ATC 19)

e Traffic encryption
* Encrypt the container traffic by using mTLS
e |stio, Linkerd
 Low performance (traffic encryption)

Limitations of existing solutions
 Even if well-defined security policies exist, existing solutions cannot
mitigate network attacks from compromised host-network containers.
e Container Traffic Exposure
e Host-network containers, which reside in the host network namespace,
naturally have full visibility of inter-container traffic
e Lack of visibility into spoofed packets
 Containers can inject spoofed packets directly into the network
interfaces of other containers (e.g., vethO, veth1l), bypassing the
inspection of traditional solutions.

e Hyperion: A novel hardware-assisted security extension for container networks.
* The Secure bridge: A hardware-offloaded networking bridge with
embedded security engines.
 SNICs: Secure network interfaces directly connected to the secure bridge
through SR-IOV.

e All communications between secure containers (containers with SNICs) are
supervised through Hyperion’s security inspectors(Blue Box) rather than the
existing bridge network.
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Challenge and Approach

How to provide an isolated inter-container communication channel from the
host network namespace without compromising networking performance?
e Offload the existing software bridge to hardware
 Enable containers to communicate directly through a hardware bridge

How to ensure the reliability of inter-container communication in the isolated
channel?

* |nspect the traffic of all containers on the hardware bridge

e Restrict the container from sending spoofed packets on the container-side
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e Security evaluations
* The host network namespace has no network interfaces that are directly
connected to secure containers.

Before the SNIC installation
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After the SNIC installation
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 Performance evaluations
 Hyperion outperforms state of the arts solutions by up to five times.
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