Towards Trusted Container Networking: Physical Network
Segmentation by Hardware-assisted Secure Bridge

Myoungsung You, Seungwon Shin
Korea Advanced Institute of Science and Technology

Introduction

In the cloud environment, most services are operated in the form of a
microservice.

A microservice consists of several containers connected through a network.
Containers communicate through a network interface implemented with virtual
network devices of a host system (e.g., Linux bridge, a software switch).

This approach effectively enables inter-container networking, but it denotes that
the container network is still tightly coupled with the host system.

The non-isolated container network inevitably exposes the inter-container
traffic to the host system.

Background and Motivation

Container networking architecture
 Containers have their own network namespace (i.e., networking stacks) and
are separated from the host network.
e Some containers called host-network containers share a network
namespace with the host kernel, allowing them to access the host system’s
network resources.

' Container | | Container | |
: : : | | Host-network i
: i i i i container i
i eth0 i ethO i '

vethO veth1

Hardware (physical NIC)

Host system
1 Network namespace

Container network security solutions

e Traffic inspection
e Restrict network flow between containers according to security policies
e Cilium, Calico, Bastion (USENIX ATC 19)

e Traffic encryption
* Encrypt the container traffic by using mTLS
e |stio, Linkerd
 Low performance (traffic encryption)

Limitations of existing solutions
 Even if well-defined security policies exist, existing solutions cannot
mitigate network attacks from compromised host-network containers.
e Container Traffic Exposure
e Host-network containers, which reside in the host network namespace,
naturally have full visibility of inter-container traffic
e Lack of visibility into spoofed packets
 Containers can inject spoofed packets directly into the network
interfaces of other containers (e.g., vethO, veth1l), bypassing the
inspection of traditional solutions.

e Hyperion: A novel hardware-assisted security extension for container networks.
* The Secure bridge: A hardware-offloaded networking bridge with
embedded security engines.
 SNICs: Secure network interfaces directly connected to the secure bridge
through SR-IOV.

e All communications between secure containers (containers with SNICs) are
supervised through Hyperion’s security inspectors(Blue Box) rather than the
existing bridge network.

Host system

' Container | | Secure | ! Secure |

. Container , |] :

i | container | | container | Docker /

ﬁhﬂ_L [swic || | | Kubemetes

 —— ¥ i

| vethO | Hyperion

| Host | mp-::il er

[Software bridge etwork B
Hyperion (Physical NIC) F'lilz Update

Secure bridge
Policy engine || Payload engine ||Forwarding engine|| Policy maps

| | Network namespace Hyperion components = Secure channel

Challenge and Approach

How to provide an isolated inter-container communication channel from the
host network namespace without compromising networking performance?
e Offload the existing software bridge to hardware
 Enable containers to communicate directly through a hardware bridge

How to ensure the reliability of inter-container communication in the isolated
channel?

* |nspect the traffic of all containers on the hardware bridge

e Restrict the container from sending spoofed packets on the container-side

Myoungsung You

KAIST

Email: famous77 @kaist.ac.kr
Website: nss.kaist.ac.kr

e Security evaluations
* The host network namespace has no network interfaces that are directly
connected to secure containers.

Before the SNIC installation

roctRflask-b: # 1p Link
1: 1ot <LOOPBACK ,UP,LOWER _UP> mtu 65536 gdisc roqueue state UNEMNOWH mode

tiggétigﬁfa:h D300 82:20:00:00 brd E8;00:00:00:08:08
37 <BROADCAST , MULTICAST UP LOWLR UP= mtu 1500 gqdisc noqueus s
After the SNIC installation

root@f Lask-b: ™ {p 110k

17 lo: <LOOPBACK,UP,LOWER _UP= mtu 65536 gdisc nogueus state UNENOWH mode
Link Moopback 0@:00:03:00:00:00 brd E6:00: 00 00 : 6606

42 + «<BROADCAST (MULTICAST ,UP,LOWER LP> mty 1588 qdisc mg state UP mo

17 [C35A0C3TOORGAGLT 31 <BROADCAST MULTICAST,UP, LONER UPs mtu 1588 qdisc
Link/ether 7a:58:60:aa:chi81 brd FRoFFafFaffof o fT Link-natnsid &

14!].:-:i:?FhEJEEal3EEI4Eﬂi.F33-| <BRIADCAST ,MULTICAST UP,LONER UP= mtu 1588 gdisc
Link/ether t6:2c:02 ca:bd:ad brd £f.ff:7F; fF Ffff Link-netnsid 7

36: Lxccfaazdsoalfapifisl: <BROADCAST MULTLCAST,UP,LONER UP> mtu 1586 gdisc
Linkfether Ya:6/:6c: /Ti2bibd brd FF:ff:ff; ff ff ff link-netnsid &

Ho: LxcTfentoetoaabiifds: <BRIADCAST MULTICAST UP,LONER UP= mtu 1586 gdisc

 Performance evaluations
 Hyperion outperforms state of the arts solutions by up to five times.

60
TCP latency 5gg == TCP throughput | -50
30 UDP latency m
— 375 '4[1.5-
W 34.1
= 40 30.8 2
-
a- 30 30 E.
T £
E -0 120 5
=
10 81 77 10.7 g 73 Eqg 1['.i'|E
0 0
Cilium Calico Istio Hyperion

NIGRAPHICS® 1.800.790.4001 WWW.GENIGRAPHICS.COM

	슬라이드 번호 1

